a2 United States Patent
Griglock et al.

US009158592B2

US 9,158,592 B2
Oct. 13, 2015

(10) Patent No.:
(45) Date of Patent:

(54) SYSTEM AND METHOD FOR TIME VARIANT
SCHEDULING OF AFFINITY GROUPS
COMPRISING PROCESSOR CORE AND
ADDRESS SPACES ON A SYNCHRONIZED
MULTICORE PROCESSOR

(75) Inventors: Mark Anthony Griglock, Oldsmar, FL,
(US); Patrick John Huyck, Trinity, FL.
(US); Sidney Slay Ishee, Odessa, FL,
(US); James Anthony Gleason, Tarpon
Springs, FL. (US); Richard Andrew
Erich, Palm Harbor, FL (US); Mathew
Lowell Aamold, New Port Richey, FLL
(US)

(73) Assignee: GREEN HILLS SOFTWARE, INC.,
Santa Barbara, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 517 days.

(21) Appl. No.: 13/462,119

(22) Filed: May 2, 2012
(65) Prior Publication Data
US 2012/0284732 Al Nov. 8, 2012

Related U.S. Application Data
(60) Provisional application No. 61/481,675, filed on May

2,2011.
(51) Int.CL

GOGF 9/46 (2006.01)

GOGF 9/50 (2006.01)

GOGF 9/52 (2006.01)

GOGF 9/48 (2006.01)
(52) US.CL

CPC ... GOGF 9/5066 (2013.01); GOGF 9/4843

(2013.01); GO6F 9/4887 (2013.01); GO6F
9/505 (2013.01); GO6F 9/5016 (2013.01);
GOGF 9/5033 (2013.01); GOGF 9/5083
(2013.01); GO6F 9/52 (2013.01); GO6F
2209/5012 (2013.01)

(58) Field of Classification Search
CPC ... GO6F 9/5066; GOGF 9/5033; GOGF 9/4881;
GOG6F 9/52; GOGF 9/4843; GOGF 9/4887,
GOG6F 9/5016; GOGF 9/505; GOGF 9/5083

USPC oo 718/100, 103, 104, 105
See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

4,414,624 A 11/1983 Summer, Ir. et al.
4,564,903 A 1/1986 Guyette et al.
(Continued)
OTHER PUBLICATIONS

Jonathan L. Herman, Christopher J. Kenna, Malcolm S. Mollison,
James H. Anderson and Daniel M. Johnson, RTOS Support for
Multicore Mixed-Criticality Systems. cs.unc.edw/~anderson/papers/
rtas12b.pdf Apr. 16-19, 2012 pp. 197-208, 12 Pages.

(Continued)

Primary Examiner — Meng An
Assistant Examiner — Abu Ghaffari

(74) Attorney, Agent, or Firm — Barceld, Harrison &
Walker, LLP.

(57) ABSTRACT

Methods and systems for scheduling applications on a multi-
core processor are disclosed, which may be based on asso-
ciation of processor cores, application execution environ-
ments, and authorizations that permits efficient and practical
means to utilize the simultaneous execution capabilities pro-
vided by multi-core processors. The algorithm may support
definition and scheduling of variable associations between
cores and applications (i.e., multiple associations can be
defined so that the cores an application is scheduled on can
vary over time as well as what other applications are also
assigned to the same cores as part of an association). The
algorithm may include specification and control of schedul-
ing activities, permitting preservation of some execution
capabilities of a multi-core processor for future growth, and
permitting further evaluation of application requirements
against the allocated execution capabilities.

42 Claims, 22 Drawing Sheets

US 9,158,592 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

4,905,145 A 2/1990 Sauber
5,168,547 A 12/1992 Miller et al.
5,339,443 A 8/1994 Lockwood
5,437,032 A 7/1995 Wolf et al.
5,485,579 A 1/1996 Hitz et al.
5,535365 A 7/1996 Barriuso et al.
5,742,821 A 4/1998 Prasanna
5,860,126 A 1/1999 Mittal
6,047,316 A 4/2000 Barton et al.
6,289,369 Bl 9/2001 Sundaresan
6,542,926 B2 4/2003 Zalewski et al.
6,629,209 Bl 9/2003 Arimilli et al.
6,629,212 Bl 9/2003 Arimilli et al.
6,728,959 Bl 4/2004 Merkey
6,745,222 Bl 6/2004 Jones et al.
6,957,432 B2 10/2005 Ballantyne
7,103,631 Bl 9/2006 van der Veen
7,209,996 B2 4/2007 Kohn et al.

7,239,581 B2* 7/2007 Delgado etal. 368/10
7,287,254 B2* 10/2007 Miller et al. . 718/102

7,694,302 B1* 4/2010 Rajanetal. 718/104
7,716,006 B2* 5/2010 Coskunetal. 702/132
7,793,293 B2 9/2010 Norton et al.

8,051,418 B1* 112011 Dice ... 718/102
8,180,973 B1* 5/2012 Armangauetal. ... 711/147
8,429,663 B2* 4/2013 Takagietal. ... 718/104

2006/0095909 Al
2006/0123420 Al
2007/0220517 Al*
2008/0196031 Al
2009/0031317 Al
2009/0031318 Al*
2009/0217280 Al
2010/0131955 Al
2010/0199280 Al

5/2006 Norton et al.

6/2006 Nishikawa

9/2007 Lippett ..occooeeevcinrennen 718/102
8/2008 Danko

1/2009 Gopalan et al.

1/2009 Gopalan etal. 718/103
8/2009 Miller et al.

5/2010 Brent et al.

8/2010 Vestal et al.

2011/0023047 Al* 1/2011 Memiketal. 718/104

2011/0055518 Al 3/2011 Hotra et al.

2011/0154346 Al* 6/2011 Jula ..o, 718/103
OTHER PUBLICATIONS

Aurélien Monot, Nicolas Navet, Frangoise Simonot, Bernard
Bavoux, Multicore Scheduling in Automotive ECUs, ieeexplore.
ieee.org/xpl/mostRecentIssue.jsp?punumber=5609073 Jul. 4-7,
2010 pp. 3734-3741. 9 Pages.

Patrik Stromblad, The Future of Multicore OS: Future Challenges for
Embedded Operating Systems and Applications sics.se/files/Enea__
MC__day.pdf. 30 Pages.

Cory Bialowas, Achieving Business Goals with Wind River’s
Multicore Software Solution, White Paper, Jan. 2009, ectimes.com/
electrical-engineers/education-training/tech-papers/4135977/
Achieving-Business-Goals-with-Wind-River-s-Multicore-Soft-
ware-Solution. 4 Pages.

Dynamic Logical Partitioning, QPS01—IBM System p Apv—120,
© Copyright IBM Corporation 2007. 29 Pages.

Enrico Bini, Marko Bertogna, Sanjoy Baruah, The Parallel Supply
Function Abstraction for a Virtual Multiprocessor, retis.sssup.
it/~bini/publications/2010BinBerBar.pdf. 14 Pages.

Kenji Funaoka, Shinpei Kato, and Nobuyuki Yamasaki, Energy-Ef-
ficient Optimal Real-Time Scheduling on Multiprocessors,
ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4519543
May 5-7, 2008 pp. 23-30, 8 Pages.

Aloysius K. Mok, Xiang (Alex) Feng, Deji Chen, Resource Partition
for Real-Time Systems, RTAS ’01 Proceedings of the Seventh Real-
Time Technology and Applications Symposium (RTAS *01), p. 75
IEEE Computer Society Washington, DC, USA © 2001. 10 Pages.
El-Haj Mahmoud, Ali Ahmad. Hard-Real-Time Multithreading: A
Combined Microarchitectural and Scheduling Approach. 2006,
repository.lib.ncsu.edw/ir/bitstream/1840.16/3182/1/etd.pdf. 178
Pages.

Malcolm S. Mollison, Jeremy P. Erickson, James H. Anderson,
Sanjoy K. Baruah and John A. Scoredos, Mixed-Criticality Real-
Time Scheduling for Multicore Systems, ¢s.unc.edu/~anderson/pa-
pers/icess10.pdf. 8 Pages.

Aloysius K. Mok, Xiang Feng, Zhengting He, Implementation of
Real-Time Virtual CPU Partition on Linux linuxfordevices.com/
files/rtlws-2005/ AloysiusMok.pdf. 14 Pages.

Héakon Kvale Stensland, Carsten Griwodz, Pl Halvorsen, Evalua-
tion of Multi-Core Scheduling Mechanisms for Heterogeneous Pro-
cessing Architectures, NOSSDAV ’08 Proceedings of the 18th Inter-
national Workshop on Network and Operating Systems Support for
Digital Audio and Video pp. 33-38 2008. 6 Pages.

Yi Zhang, Nan Guan, and Wang Yi, Towards the Implementation and
Evaluation of Semi-Partitioned Multi-Core Scheduling, Date Work-
shop PPES 2011, Mar. 18, 2011, pp. 42-46. DOI: 10.4230/OASIcs.
PPES.2011.42, URN: urn:nbn:de:0030-drops-30804, URL: drops.
dagstuhl.de/opus/volltexte/2011/3080/. 5 Pages.

Processor Affinity—Wikipedia, Retrieved from “en.wikipedia.org/
wiki/Processor__affinity” 3 Pages.

Mentor Embedded: Multi-OS on Multicore Solutions Datasheet,
Copyright © 2011 Mentor Graphics Corporation. 2 Pages.

Set Process Affinity Mask Function *“//msdn.microsoft.com/en-us/
library/windows/desktop/ms686223(v=vs.85).aspx” Microsoft Win-
dows Dev Center—Desktop. 7 Pages.

* cited by examiner

U.S. Patent

Oct. 13,2015 Sheet 1 of 22

US 9,158,592 B2

Content Server

Ve 7 M.ﬂ”\,a
e ™,
i hY
-'(\".
i "~‘-,'
{] H
, i
Metwork

120

Recsiver

FIG. 1A

Sodeanl.

Cutput Devices

238

Communication
interface

A
H
5, 210 213 22¢
- L34 282 Lot
i Main ROM Storage
i Meamory Device
: E 3 R: &
k4 5 k.3 k.3
E S EY
¥
203
PFrovessor

U.S. Patent Oct. 13, 2015 Sheet 2 of 22 US 9,158,592 B2

.«'«“I
-
»
4%
& et et
? e

Fodd

T,
\"‘m\‘
o

§f_§s§ﬁf&m~§;’s§fx&j§fp¢ i

o s s s ke
A

190

FIGn 1B

U.S. Patent Oct. 13, 2015 Sheet 3 of 22 US 9,158,592 B2

380

238

%,
*\

(AMinity_Group_Type i

FIG 28

U.S. Patent Oct. 13, 2015 Sheet 4 of 22 US 9,158,592 B2

isﬁmﬁiﬁiﬁ

FI(3

U.S. Patent Oct. 13, 2015 Sheet 5 of 22 US 9,158,592 B2

P 408
P Ee 3§} (

e
“a

416 448
s, | Core is Scheduled ld

{Pradetarmined Sey L

FIG. 4

U.S. Patent Oct. 13, 2015 Sheet 6 of 22 US 9,158,592 B2

Same
Address-Spave with

520 ST pifferestCore 1T g4y
. S gap associations yooTe
i 3¢k 4
" e s B o . . -
; \‘ 3 : & Wy
i As AGy 1 AG,
t VAS, VAS, 1) vas, |
] .
SN & HELE
§] § $
LY # % §

. Gifferent
hE 250 et AAArRES-SPALG [Do, $40

Corg Axsociations %

At R, Al
VAS, VAS, VAS,, VAS,
QZ C‘X {:X

Wt -~ -~
O . s WL
#, Y

FICG 3

U.S. Patent Oct. 13, 2015 Sheet 7 of 22 US 9,158,592 B2

LS
i
'J\
S
.
%
¥ Tapg Affinity Groups
weith Different Cure
. Affinity Group . Assigumants Suhedalnd
614 | Sehesislest Repemtedty SameTime
) "‘" - 536
, A, j%
* S Y %, Adfinity Group with A
N B0 L putigia vas,)
S s LY Address-Spanes s $ oy
Yg Sy s o AR Y
y
AG, AG, 1 AG, G A, /g’
VAS ?&55, VAS, \m& {| AS, *1&35(VAS, ; £ YAS, ;
H H
=1 < i Ly !) :
s ¥
o ﬁ*-« . g y . v; “5.. . »‘*(
) 650 ' ' '
\ ,
NS AL, i
VAS VAS, i arfinity Genug
; sty Pieitinls
"33 Ly % Kares hasigest f450}
S ,,&':(/,..»‘”":
{,m o mmww«mmwmwmmwwww,.my/
H ‘ AG, E Affisity Groug
! VAR, YAS, KAS, P owith Muitiple
i O Ty Cp i € ! Coras ang
! : ading s § Addvane-Spces
i H Aggigrad
"b‘wm,w,wm,,“WMWHMW,,“,,WM,,M%NMWM“,,MW,,MW,WWMNMW,“W,,“,,.*
Tine ;
O

F1G. 6

U.S. Patent

Oct. 13, 2015

Sheet 8 of 22

US 9,158,592 B2

e "
; VAS,, VAS, VAS,
Cy 1y
Fime ¢
!
¥\ wvmar® \\
Conflict ~ Dvorlapping Lonflict « Ovariapping
Use of VAS, Use of O,
om— M 2 4§
.. ; P
AG, AG, : AG, 3 5
VAR, VAE, P WAS /3}
(:3: ﬂﬁ Cy {:5 % QB # §
; i
y o :
Time i [it
AL, A, AL, AG, ,,/
KAS, (A5, . KAS, VAS, p
c&‘ '3 C&, {:4
- i
e 1
! >
d 3

FiG. 7

s,

kaﬁitzzz ~ voriapping

Usa of VAS,

U.S. Patent Oct. 13, 2015 Sheet 9 of 22 US 9,158,592 B2

s Core's Initial Befease
8O L for Schedaling
N

P g20--y L

Synchranize |
o b, weith ol Govas |

e B

| Disassacisty Cow
e W0IED Previous
IR | Aftindty Sroup{s}

‘wait for Completion © | | Bax
i oof Mext Schmdule [g
Setection Bvent [

Synchrosize with
other Coons that
wire Sgsoviabug
P weith tha same

i Rffinity Srounis)

" Coreis vsag !
In Carrent
e, Bohedule?

Losre's
Selreduting
of {weront $R4
Affinity e
Grossd sl
Coraplube

#m“ — %40

iy Core's Newt

fssosiste Core Scheduling . RO

with Lase's

Mot Sffinity e Asunciatesd with

Groupisd A ARty s
S Grospdsyd

Bwent

i

3 ¥0d
Witk Othew
Lures
Ansockatod
ith the Sage. SO

Affinity
 Groupis}

o Repeat Botd Care's
Schedulieg of

Current Afiniy : 1

Sroupls} Complete Core Belnted

Scheduling

; Ewant
Schedule Avdgned | Betected
Address-Bpates an | :
Assigned £Ores | e
frirn the Salected
Affinity Groupls} |

FIG. 8

U.S. Patent

Oct. 13, 2015

{ Provass Cora's Naxt
L Bohadoeling Beent 7

v e

Sy st
Soheduie

83

Care Is

Linedd Bi

Current
", Schedute?

. YES

o has

ves o Prodefined

AFfirity
Groups o

Balact Baxt

| Konsacutive Bty of
P Rsee’s Pradafingd

| Saepaersce of AFfinity
i Groups {Salect ist

Enitry i Srandaws
Sabnotion was Last
Entry)

Sheet 10 of 22

Seqguanas of

e S

o

i
s

.................... {} ._3 {}

""-.ga.y.., ., Nm

Gt

]

R

Goteot Affinity Group
Assacintad with this Core
Foor Whalchs ool Rogprsiroed
Lores arve Avallable
AND
Wihose Address-Spaces
are not Currentiy
Ruanndng on Anather Core
Aguocintad with »
Ciffarant AFfinity Sroupy

Ersed

FIG. 9

US 9,158,592 B2

U.S. Patent

Oct. 13, 2015

Sheet 11 of 22

US 9,158,592 B2

160G~
T Affinitylroup 1
Corg il i
Primaryaddd
e Primaryiddrens
H~ EndaffinityGroup
% P20 el ‘
{ 2 A¥inlteGroun 2
%, Lo i i1
\ Frimarvhddressipace ASS
> EndAifiniyGroup
o AdfinityGroup 3
. f"} Care 3 #
/‘/ PrirmaryiddressSpace A4
v EndaffininyGroun
‘f‘/ e o
V4 F A¥finhyGroup 4
VA Com 10 2
VA Frimarviddressipacs A58
‘ /i, o EndiffinityGroug
¢
L030 <f TS0 3 Al Group 3 |
N Core 1 %
QQ\ PriarghddressSpace A5G
AN Prismaryaddresslpace AS7
\%\«\ \\\ EngdaffinibyGang
\\ \\\ N\' i AffinityGroupd
N 3 %
\\ \,\ Core iD %
SN, PrinmryfeidrassSpace A8
\ N | EndaffimtyGroup
% '\’
\%.\ R AffinityGroup 7
"x Coap 1D 4
&‘-‘ Privoaryiddresslpace ASS
N | EndAttinityGenp
*
¥ an aityGroup 8
Core 1D 4
Frivaryiddressipace ABLD
Erglaffinityroug

FIG. 1A

U.S. Patent

164 .

Oct. 13, 2015

Sheet 12 of 22

PariitionSchedude 1
Partitionteidchedide
MisiorfrpnePeriod 20

Partition 1
AffinityGroun 1
Ot &
Exse T %
3

e,
N\\k {iffant :
Bupclime 2
Qffupt 17
ExeeThone %

EndParigion

Partition 2
AffinityGroup 2

ExmeTime 4
Gifaet i1

EndParitionSubbchedul

PartittonSuebschedule 2
BisiorFramePerod 30
Partitinn 1
Sffindpdiroun 3
{H¥snt ¢

EndPariition
Bartitinn &

AffinityGroug 4
Ot
ExerTime

1970

R

PartitinntubSdiedule 3
3G

MaoFranePariod

Eserhime 3
EnciPartition
EndfarttionSubSchadulp

Parthiorsublochedule 4

MahwFrovePeried 20
Bartitinon 1
AffinivgGrou 7
Offsey i
e T 3
Offsat 5
Exet Ty 3
{fsat i7
Exen T 3
Engdfartition
Partiion 2
AffinivgGroug &
Offset i
ExetTane 3
(et i3
EwpeTine 4

EndPurtition
EndParitionSubdchedude
EndPartionSchadule

FiG. 108

US 9,158,592 B2

HG

o 1050
{

A

3520
S

U.S. Patent Oct. 13, 2015 Sheet 13 of 22 US 9,158,592 B2

Affinity Group 1 “f"}
e 7
Ko 7
/ LT ¥
){ %"‘x ;:‘:\”““m
/ N him@e .
7 .
i 2{;3 4:5i86:7 8\9\23 114211314 3.§”f§“§:12&§§ 1920
Corel ¥l Pyo2 tyoo2 a1 oy 1
Core 2 3 : : 4 ; 3 ; ;
fore3 ! § : B § i 8 i i
cored -1 o V4TS ' ! ; A
ed 8 1 R

FIG. 10C

U.S. Patent Oct. 13, 2015 Sheet 14 of 22 US 9,158,592 B2

A findiylisoup 3
{ oret (s

H
¥
“

“y

%

Cored I}
Prigary Addr

seipace ARE
Ead

Enda inigyGroap
tyimup 2

Copgddd Affididiooup 6

avediy
Coredfd
{omif

i
2
3

L B

A

:;ssd’sidx?’msm Fruddd
; us;t}«’iéaﬁ;f‘ A%

Afflany(mmg&
Eaw

YRS

Ly

1A fBain

afAddrossBpacs ASH

FIG, 1A

U.S. Patent Oct. 13, 2015 Sheet 15 of 22 US 9,158,592 B2

FIgG

J
¢

PartitionSchedule 1
PartitfonSubSchedule 1
aiorframeberiod 20

Partition 1 Pariition &
AffinityGroup 1 AffinityGroup &
e & (ffspt
ExpeThme P ErecTime
{Hfset 1% {iffset
ExecTime Exprthne
EndPartition {hfser
e T
Partition 2 Offset
AffiniyGroup ExgrTime
{iffaet 3 {ffset
ExecThne 2 ExecTime

EnadParsition faet

ExprTime

Partition 3 EndPartition

AffinityGroun 3
Ofset
ExecTime
{ffeet Offant
Expc T ELxecting

EnddPartition ey

ExaoTims

Partition g Cifspt

AffinityGroup 4 Exectime
et 1 EndPartition
Execlime

EndPartition ErpiParationsubbchedule

EndParitionSchedule

o
L e L3 e B2

Pt

535 E2 4]

Partition 7
AffinityGroup 7

fad

s vl T > IR T X

Fad

Partton’
AffiniyGrouns
Tffney 15
P Tine 3
EnuiPartition

FIG, 1B

US 9,158,592 B2

Sheet 16 of 22

Oct. 13, 2015

U.S. Patent

Time

1150,
N

A Rl Rl e
T e S W TR e S S S
o
R aen]
il IRTOR IRVONS IRVORS BN
N.i»
.‘1 W00 W00 X000 20002000 2006 H00C HOOC VOO
fg a_wU fns.\ &
i 006 O00L OOOL DO HON HONC XM
L o3
R]
ey ey |
4 ¥ ¥ LE
.i SR TG SR SRR S
ALE IRC T QT
¥
000k
posoortt B B A B M B
1 S00¢ DODE COOL COOC VOB VOO VOO 000 JOV;
ot IR IV=1 IRV
000 1000 2000 200072000 J00C O
o
S Loy ey by
£~
00 TOGe Noioin 2007000 D00 D
LT)]
SRR REC R
e
2000 00BE 000 ONCTOON 00 DO 2000 2000
R R
e X000 X000 X0007I000 200 O
s
‘poo)
i 3 oy W
wooW W @
Sooe KN Boown oo
& & 5 &
et Ld A LS

HC

FIG.

U.S. Patent Oct. 13, 2015 Sheet 17 of 22 US 9,158,592 B2

1206

o AfEnityGroup 1
P2 e Corgi 1
PrimaryAddressSpace A%

EncaffinityGroup

U783 1 4 g ot O

1224~ CorefD 2
Frirnarefddrenbnace A2
PrimaryAddresspace A53

EngiaffinityGrous

e BRI GROUD 3
§2 36—~ Coredl 3
PrimaryhddressSpace AS4
Primaryhddrassipace 885
EndafininyGroun

e A G GUR 4
1240 - CoreiD 3
PrimaryiddressSpare ASS
End ity Groun

e B BOun &

EnciafininyGrouy

e AT G ROUR 6
P25 S Corgid 4
PrimarvAddresSpace ASE
EndaffinityGroup

FIG. 124

U.S. Patent

Oct. 13, 2015

Sheet 18 of 22

et
Bk
Sl
g4

US 9,158,592 B2

LY,
N
N
~3

Partitiorfchadule 3
PartitonSubdchedude 1
MaiprframePariog 34

Partition 1
AffiniteGroup L
Affinityliroup 2

Difet i
ExeTing i
et 2
e fing 2
Difget i
ExugTine A
{ffset a
ErerTing 2

EndPartitios

ErsPariitionsubichedule

RartitionSubbohedule 3
MajorFramePering 1%
Partition
AdfinipGroun 3
{Hfget ¢
ExucTime 4
g2 LT]

EndPardtion

Fartithon 2
AffinityGroup d
{fset 5
ExncTine 2
Ttfaat 13
Exectine 2
fradParation

ErudPardtionSablchedule

PartitionSubSchedule 3
rManFramePerind 20
v
AffiedreGrous s
Uitfaat

-
80

e Tine 2
ExpeTine 3

Cifsnt 14
fwenTine 3
EngParption

Partition
AffinityGaup &

Orffsag Z
PxecTine &
{fset G
fronTine %
ey 1%

P T
EruiPartition

EnciPartitionSubScheduln
EndPartitionShedule

F1G. 128

U.S. Patent Oct. 13, 2015 Sheet 19 of 22 US 9,158,592 B2

3]
Lo
Fon
0 2]
el

S99 GI1I213 141516 1718.1928

Core 1

1y
. ¥ Start magor frame
Core2 |1 |

P i, S
e 3 § Start major frame

2000 2006 00 00 SO0 G40 0K
006 J00L SO0 000 SO0t SRS S0 :

¥ 1000 :900¢ 1099
B

L .
Cored | 31 6

0P 2000 2008
30 3004 2008
LA
08 Joas Jeen
NPT,
foral
U 900C 000¢
&3
o 0no¢ ool
jor acec G0ol
<

FlG. 120

U.S. Patent Oct. 13, 2015 Sheet 20 of 22 US 9,158,592 B2

1310 1320 1334 1340
Ny "4 Ny "

1300 WW»K%’ % ?{iﬁ i E §3§:§3 % E T3 § E T4 E

R B S

P Caret) 1 Cone 2 Ei.,uu 31 1 Cored |
- e * fﬁ ,//7)'

1318 1323 F335 1343

FIG. 13A

1

o1 §}€#E

-
=
el
&3
2
=
——
—
W
w 3
i
SmmmamAINT
-
=
8
5
2

FRGO13B

US 9,158,592 B2

Sheet 21 of 22

Oct. 13, 2015

U.S. Patent

-

X\stﬁwff

-
\g

AR

.3

P

r

/

'
<

1

£

i {

w0
L&

% 4 -
kY e .

S e s

FVIPTREV RPN

¥
&
¥
3

)
o t,.ﬁk.cwtt..} PRI
£

X

3

M

e 2an i z.m:sz.saameas . e,

R e Y

A e e AR e e

i

e

s

H
M _ SV JIRY W

3

",

ri;?;;ﬂ/ﬁ,ﬁ .

(ivd

US 9,158,592 B2

Sheet 22 of 22

Oct. 13, 2015

U.S. Patent

§1 D04

\

fﬁ/ﬁ?ﬁ WSAS]

1
el
Yy
Lo d

- e
AR A

W03

E: X

eleileiteetelei

o

P
b
et
Wy
Ly

US 9,158,592 B2

1
SYSTEM AND METHOD FOR TIME VARIANT
SCHEDULING OF AFFINITY GROUPS
COMPRISING PROCESSOR CORE AND
ADDRESS SPACES ON A SYNCHRONIZED
MULTICORE PROCESSOR

RELATED APPLICATIONS

This application is a non-provisional of and claims priority
under 35 U.S.C. §119 to U.S. Application No. 61/481,675,
filed May 2, 2011, entitled TIME-VARIANT SCHEDUL-
ING OF AFFINITY GROUPS ON A MULTI-CORE PRO-
CESSOR, which is incorporated by reference herein in its
entirety.

BACKGROUND OF THE DISCLOSURE

1. Field of the Disclosure

The disclosure relates generally to methods for scheduling
applications on a multi-core processor.

2. General Background

The advent of faster and more capable processors has
resulted in the development of operating systems features that
permit previously independent applications running on com-
pletely independent processors to be ported to an operating
environment where the independent applications share a pro-
cessor. Separation and scheduling mechanisms have been
defined and fielded that support simultaneous hosting of mul-
tiple applications on a single-core processor. Previous sched-
uling mechanisms have included priority based schedulers,
time-partitioning schedulers, cooperative schedulers, and
many other schedulers, including schedulers that combine
techniques. Each scheduling mechanism has capabilities that
are beneficial to some uses but include tradeoffs for other
uses.

Additional processor capabilities in terms of supporting
multiple computing cores (i.e., multi-core) within a single
processor, are increasingly becoming standard, with more
cores seemingly being integrated with each passing revision.
A multi-core processor is an integrated electronic device that
contains two or more independent processing elements (i.e.,
cores, with or without dedicated caches) on which execution
sequences can simultaneously execute. These cores are inter-
connected with each other and the remaining system
resources (e.g., data memory, program memory, hardware
devices) through hardware capabilities provided by the multi-
core processor. The composite execution capabilities of the
multi-core platform should mean that there is sufficient band-
width to add new applications (or extend existing applica-
tions) in the future, provided the scheduling mechanism
includes sufficient support to preserve unallocated processor
core resources and sufficient granularity to allocate those
resources, independent of which core contains unallocated
resources.

Several general multi-core usage paradigms have been
developed, including: (1) Asymmetric Multi Processing
(AMP), where each core runs a completely independent
executable; (2) Symmetric Multi Processing (SMP), where an
executable is designed to make use of multiple cores simul-
taneously; (3) Combinations of both (some cores used for
AMP, other cores used for SMP).

The rigidness of these usage paradigms is highlighted
when additional applications are attempted to be added to a
multi-core processor based platform. A typical implementa-
tion, during initialization, may associate a core or set of cores
with an application or group of applications. For example,
elemental associations (processor sets) used for scheduling

10

15

20

25

30

35

40

45

50

55

60

65

2

may be defined, such that there may be an association of
processor cores within the processor sets. However, processor
cores in such applications are not shared between processor
sets. While any unallocated core can be utilized for new
applications (or to extend an existing application), a new
application cannot be defined that utilizes spare capacity on
cores assigned to different processor sets. Other implemen-
tations may not associate cores with any application. For
example, elemental associations (scheduling domains) used
for scheduling may be defined, such that there is intentionally
no association of a processor core within the scheduling
domain. As such, in such implementations, preservation of
core resources is not enforced (e.g., all available processor
core capabilities may be utilized, including capabilities
intended to be preserved for future use or capabilities not
intentionally used due to application programming errors).

Accordingly, it is desirable to address the limitations in the
art.

SUMMARY

Methods and systems relating to scheduling applications
on a multi-core processor are disclosed. Since any single core
may provide more execution capabilities than any single
application requires and some of these applications may be
designed to utilize multiple cores simultaneously (including
utilizing different numbers of cores at various times during
execution), a new scheduling method that efficiently and
practically utilizes multi-core processors is necessary. In one
embodiment, this method, time-variant scheduling, defines
scheduling for groupings of how cores will be utilized by one
or more applications, with the grouping of cores and applica-
tions being permitted to vary over time. One component of
time-variant scheduling is the forming of association of cores
and applications into groupings, referred to as affinity groups.
Affinity groups can be formed to define any association of
cores and applications, but typically are formed to correspond
to some intended function (or functions). When an affinity
group is selected for scheduling on a core (or set of cores), its
associated address-spaces are exclusively scheduled on the
associated cores (i.e., all other address-spaces are excluded
from using the allocated cores). The affinity groups are sched-
uled independently of other affinity groups, permitting
sequences that closely correspond to application require-
ments, yet also permitting other affinity groups to be devel-
oped that can make use of cores that are not being utilized or
fully utilized. Any new application (or extension of an exist-
ing application) can make use of the unallocated execution
time across the entire multi-core processor. Other aspects and
advantages of various aspects of the present invention can be
seen upon review of the figures and of the detailed description
that follows.

In certain embodiments, a method for scheduling applica-
tions on a multi-core processor comprising a plurality of
processor cores is disclosed, the method comprising: associ-
ating a first at least one processor core and a first plurality of
address spaces with a first affinity group; associating a second
at least one processor core and a second plurality of address
spaces with a second affinity group; and scheduling one or
more of the first affinity group and the second affinity group to
execute on associated cores of the multi-core processor,
wherein the step of scheduling further comprises: releasing a
first processor core for scheduling; synchronizing the plural-
ity of processor cores; processing a scheduling event for the
first processor core; associating the first processor core with
the affinity group associated with the scheduling event; and
assigning a plurality of address spaces to the first processor

US 9,158,592 B2

3

core for the scheduling event. The scheduling event may
comprise task-core affinity for at least one task. At least one
task-core affinity may be designated to be changeable at
run-time. A task-core affinity may be designated not to be
changeable at run-time. The method may further comprise
synchronizing the first core with any of the plurality of pro-
cessor cores associated with the scheduling event. The
method may further comprise synchronizing the first core
with at least one of the plurality of processor cores associated
with the affinity group associated with the scheduling event.
The step of scheduling may further comprise scheduling at
least one of the first one or more processor cores according to
a predefined sequence of affinity groups. The step of process-
ing the scheduling event may comprise selecting an affinity
group for which all of the associated cores are available and
none of the associated address spaces are currently running
on another core.

In certain embodiments, a method for scheduling applica-
tions on a multi-core processor comprising a plurality of
processor cores is disclosed, the method comprising: associ-
ating a first at least one processor core and a first plurality of
address spaces with a first affinity group; associating a second
at least one processor core and a second plurality of address
spaces with a second affinity group; and scheduling one or
more of'the first affinity group and the second affinity group to
execute on associated cores of the multi-core processor. The
first affinity group may comprise at least one dependency
group comprising a plurality of address spaces that share at
least one resource. The method may further comprise sched-
uling a plurality of address spaces associated with at least one
dependency group. The second at least one affinity group may
comprise at least one of the at least one dependency group.
Only applications associated with the first plurality of address
spaces may be eligible to be scheduled on the first at least one
processor core when the first affinity group is being executed.
At least one of the first plurality of address spaces may be a
primary address space eligible to run on any of the first at least
one processor core. At least one of the first plurality of address
spaces may be a restart address space eligible to restart on any
of'the first at least one processor core. At least one of the first
plurality of address spaces may be a background address
space eligible to run in the background on any of the first at
least one processor core. The step of scheduling a background
address space may further comprise scheduling based on a
priority less than a predetermined threshold. The step of
scheduling may further comprise activating one of a plurality
of schedules for at least one of the associated cores. The step
of scheduling may comprise scheduling the first affinity
group and the second affinity group to execute simulta-
neously on one or more cores of the multi-core processor. The
step of scheduling may further comprise scheduling at least
one of the first one or more processor cores according to a
predefined sequence of affinity groups. The first plurality of
address spaces may comprise at least one address space in the
second plurality of address spaces. The first at least one affin-
ity group may comprise at least one address space in the
second at least one affinity group. The method may further
comprise scheduling a task to run on a processor core accord-
ing to a task-core affinity for the task. The method may further
comprise scheduling a task to run on a processor core accord-
ing to a task-core affinity if the task has an affinity for a
processor core associated with the affinity group scheduled
for execution. The method may further comprise not sched-
uling a task for execution with an affinity group if the task has
an affinity for a processor core that is not associated with the
affinity group. The step of scheduling may further comprise:
releasing a first address space for scheduling; synchronizing

10

15

20

25

30

35

40

45

50

55

60

65

4

the plurality of processor cores; processing a scheduling
event for the first address space; and assigning the first
address space to a processor core for the scheduling event.

In certain embodiments, a method for scheduling applica-
tions on a multi-core processor comprising a plurality of
processor cores is disclosed, the method comprising: associ-
ating a first at least one affinity group with a first subsystem;
associating a second at least one affinity group with a second
subsystem; wherein the first at least one affinity group has no
cores in common and no address spaces in common with the
second at least one affinity group, whereby the first subsystem
can be scheduled independently of the second subsystem.

In certain embodiments, a system for scheduling applica-
tions on a multi-core processor is disclosed, comprising: a
plurality of affinity groups each comprising one or more
processor cores and a plurality of address spaces; and a sched-
uler configured for assigning one or more of the plurality of
affinity groups to execute on associated cores of the multi-
core processor, wherein the scheduler is further configured
for: releasing a first processor core for scheduling; synchro-
nizing the plurality of processor cores; processing a schedul-
ing event for the first processor core; associating the first
processor core with an affinity group associated with the
scheduling event; and assigning a plurality of address spaces
to the first processor core for the scheduling event. The sched-
uling event may comprise task-core affinity for at least one
task. At least one task-core affinity may be designated to be
changeable at run-time. A task-core affinity may be desig-
nated not to be changeable at run-time. The scheduler may be
further configured for synchronizing the first core with any of
the plurality of processor cores associated with the schedul-
ing event. The scheduler may be further configured for syn-
chronizing the first processor core with at least one of the
processor cores associated with the affinity group associated
with the scheduling event. The scheduler may be further
configured for scheduling at least one processor core accord-
ing to a predefined sequence of affinity groups. The scheduler
may be further configured for selecting an affinity group for
which all of the associated cores are available and none of the
associated address spaces are currently running on another
core.

In certain embodiments, a system for scheduling applica-
tions on a multi-core processor is disclosed, comprising: a
plurality of affinity groups each comprising one or more
processor cores and a plurality of address spaces; and a sched-
uler configured for assigning one or more of the plurality of
affinity groups to execute on associated cores of the multi-
core processor. Only applications associated with the address
spaces assigned to an affinity group may be eligible to be
assigned to the processor cores assigned to the affinity group
scheduled for execution. At least one of the plurality of affin-
ity groups may comprise at least one dependency group com-
prising a plurality of address spaces that share at least one
resource. The scheduler may be further configured for sched-
uling a plurality of address spaces associated with at least one
dependency group. At least two of the plurality of affinity
groups may share a dependency group. The scheduler may be
further configured for activating one of a plurality of sched-
ules for at least one of the associated cores. The scheduler
may be further configured for scheduling a task to run on a
processor core according to a task-core affinity for the task.
The scheduler may be configured to schedule a task to run on
a processor core according to a task-core affinity if the task
has an affinity for a processor core associated with the affinity
group scheduled for execution. The scheduler may be config-
ured notto schedule a task for execution with an affinity group
if the task has an affinity for a processor core that is not

US 9,158,592 B2

5

associated with the affinity group. Each of the affinity groups
may have no processor cores and no address spaces in com-
mon with any of the other of the plurality of affinity groups, to
permit each of the plurality of affinity groups to be scheduled
independently. The scheduler may be further configured for
scheduling a first affinity group and a second affinity group to
execute simultaneously. The scheduler may be further con-
figured for scheduling at least one processor core according to
a predefined sequence of affinity groups. The first plurality of
address spaces may comprise at least one address space in the
second plurality of address spaces. The first at least one affin-
ity group may comprise at least one address space in the
second at least one affinity group. The scheduler may be
further configured to propagate timing events of the first
processor core to at most, the plurality of processor cores
associated with the scheduling event. The scheduler may be
further configured for: releasing a first address space for
scheduling; synchronizing the plurality of processor cores;
processing a scheduling event for the first address space; and
assigning the first address space to a processor core for the
scheduling event.

In certain embodiments, a system for scheduling applica-
tions on a multi-core processor is disclosed, comprising: a
plurality of subsystems each comprising one or more affinity
groups, wherein each of one or more affinity groups com-
prises one or more processor cores and a plurality of address
spaces; and a scheduler configured for assigning one or more
of the plurality of affinity groups to execute on associated
cores of the multi-core processor; wherein each of the sub-
systems has no processor cores and no address spaces in
common with any of the other of the plurality of subsystems,
to permit each of the plurality of subsystems to be scheduled
independently.

BRIEF DESCRIPTION OF THE DRAWINGS

By way of example, reference will now be made to the
accompanying drawings, which are not to scale.

FIG. 1A illustrates an exemplary networked environment
and its relevant components according to aspects of the
present invention.

FIG. 2A is an exemplary block diagram of a computing
device that may be used to implement aspects of certain
embodiments of the present invention.

FIG. 1B shows attribute definitions and associations for an
“address space” according to aspects of the present invention.

FIG. 2B shows attribute definitions and associations for an
“affinity group” according to aspects of the present invention.

FIG. 3 shows attribute definitions and associations for a
“schedule” according to aspects of the present invention.

FIG. 4 shows attribute definitions and associations for an
example core’s predetermined sequence of affinity groups
according to aspects of the present invention.

FIG. 5 and FIG. 6 show examples of valid affinity group
associations and schedules according to aspects of the present
invention.

FIG. 7 shows examples of scheduling conflicts for affinity
groups that would occur when utilizing some of the optional
scheduling enforcements covered by the method according to
aspects of the present invention.

FIG. 8 contains a control flow diagram for scheduling
affinity groups on a core and synchronizing the core with
other cores belonging to the same affinity groups according to
aspects of the present invention.

FIG. 9 contains a control flow diagram for selecting a
core’s next scheduling event for the current schedule when

20

25

35

40

45

65

6

utilizing some of the optional scheduling enforcements cov-
ered by the method according to aspects of the present inven-
tion.

FIG. 10A shows sample affinity group associations of
address-spaces and cores with each affinity group utilizing
unique cores and one or more unique address-spaces. This is
exemplary of an Asymmetric Multiprocessing (AMP) con-
figuration using the method according to aspects of the
present invention.

FIG. 10B shows a sample data structure and configuration
that may be used to control the scheduling of the affinity
groups of FIG. 10A.

FIG. 10C graphically illustrates the schedule implemented
by FIG. 10B for the affinity groups of FIG. 10A.

FIG. 11A shows sample affinity group associations of
address-spaces and cores with some affinity groups utilizing
unique cores and one or more unique address-spaces and
other affinity groups sharing cores and address-spaces. This is
exemplary of an Asymmetric Multiprocessing (AMP)/Sym-
metric Multiprocessing (SMP) hybrid configuration using the
method according to aspects of the present invention.

FIG. 11B shows a sample data structure and configuration
that is used to control the scheduling of the affinity groups of
FIG. 11A.

FIG. 11C graphically illustrates the schedule implemented
by FIG. 11B for the affinity groups of FIG. 11A.

FIG. 12A shows sample affinity group associations of
address-spaces and cores with some affinity groups utilizing
unique cores and one or more unique address-spaces and
other affinity groups sharing cores. This is exemplary of an
AMP configuration using the method according to aspects of
the present invention.

FIG. 12B shows a sample data structure and configuration
that is used to control the scheduling of the affinity groups of
FIG. 12A. The configuration uses different major time peri-
ods for the different subsystems.

FIG. 12C graphically illustrates the schedule implemented
by FIG. 12B for the affinity groups of FIG. 12A.

FIG. 13A and FIG. 13B show an example of task-core
affinity scheduling.

FIG. 14 shows an example of a Unified Multiprocessing
(UMP) system.

FIG. 15 shows an example of a Time-Variant Unified Mul-
tiprocessing (tuMP) system.

DETAILED DESCRIPTION

Those of ordinary skill in the art will realize that the fol-
lowing description of the present invention is illustrative only
and not in any way limiting. Other embodiments of the inven-
tion will readily suggest themselves to such skilled persons,
having the benefit of this disclosure. Reference will now be
made in detail to specific implementations of the present
invention as illustrated in the accompanying drawings. The
same reference numbers will be used throughout the draw-
ings and the following description to refer to the same or like
parts.

Further, certain figures in this specification are flow charts
illustrating methods and systems. It will be understood that
each block of these flow charts, and combinations of' blocks in
these flow charts, may be implemented by computer program
instructions. These computer program instructions may be
loaded onto a computer or other programmable apparatus to
produce a machine, such that the instructions which execute
on the computer or other programmable apparatus create
structures for implementing the functions specified in the
flow chart block or blocks. These computer program instruc-

US 9,158,592 B2

7

tions may also be stored in a computer-readable memory that
can direct a computer or other programmable apparatus to
function in a particular manner, such that the instructions
stored in the computer-readable memory produce an article of
manufacture including instruction structures which imple-
ment the function specified in the flow chart block or blocks.
The computer program instructions may also be loaded onto
a computer or other programmable apparatus to cause a series
of operational steps to be performed on the computer or other
programmable apparatus to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide steps for
implementing the functions specified in the flow chart block
or blocks.

Accordingly, blocks of the flow charts support combina-
tions of structures for performing the specified functions and
combinations of steps for performing the specified functions.
It will also be understood that each block of the flow charts,
and combinations of blocks in the flow charts, can be imple-
mented by special purpose hardware-based computer sys-
tems which perform the specified functions or steps, or com-
binations of special purpose hardware and computer
instructions.

For example, any number of computer programming lan-
guages, such as C, C++, C# (CSharp), Perl, Ada, Python,
Pascal, SmallTalk, FORTRAN, assembly language, and the
like, may be used to implement aspects of the present inven-
tion. Further, various programming approaches such as pro-
cedural, object-oriented or artificial intelligence techniques
may be employed, depending on the requirements of each
particular implementation. Compiler programs and/or virtual
machine programs executed by computer systems generally
translate higher level programming languages to generate sets
of machine instructions that may be executed by one or more
processors to perform a programmed function or set of func-
tions.

The term “machine-readable medium” should be under-
stood to include any structure that participates in providing
data which may be read by an element of a computer system.
Such a medium may take many forms, including but not
limited to, non-volatile media, volatile media, and transmis-
sion media. Non-volatile media include, for example, optical
or magnetic disks and other persistent memory. Volatile
media include dynamic random access memory (DRAM)
and/or static random access memory (SRAM). Transmission
media include cables, wires, and fibers, including the wires
that comprise a system bus coupled to processor. Common
forms of machine-readable media include, for example, a
floppy disk, a flexible disk, a hard disk, a magnetic tape, any
other magnetic medium, a CD-ROM, a DVD, any other opti-
cal medium.

FIG. 1A depicts an exemplary networked environment 100
in which systems and methods, consistent with exemplary
embodiments, may be implemented. As illustrated, net-
worked environment 100 may include a content server 110, a
receiver 120, and a network 130. The exemplary simplified
number of content servers 110, receivers 120, and networks
130 illustrated in FIG. 1A can be modified as appropriate in a
particular implementation. In practice, there may be addi-
tional content servers 110, receivers 120, and/or networks
130.

In certain embodiments, a receiver 120 may include any
suitable form of multimedia playback device, including,
without limitation, a cable or satellite television set-top box,
a DVD player, a digital video recorder (DVR), or a digital
audio/video stream receiver, decoder, and player. A receiver
120 may connect to network 130 via wired and/or wireless

30

40

45

55

8

connections, and thereby communicate or become coupled
with content server 110, either directly or indirectly. Alterna-
tively, receiver 120 may be associated with content server 110
through any suitable tangible computer-readable media or
data storage device (such as a disk drive, CD-ROM, DVD, or
the like), data stream, file, or communication channel.

Network 130 may include one or more networks of any
type, including a Public Land Mobile Network (PLMN), a
telephone network (e.g., a Public Switched Telephone Net-
work (PSTN) and/or a wireless network), a local area network
(LAN), a metropolitan area network (MAN), a wide area
network (WAN), an Internet Protocol Multimedia Subsystem
(IMS) network, a private network, the Internet, an intranet,
and/or another type of suitable network, depending on the
requirements of each particular implementation.

One or more components of networked environment 100
may perform one or more of the tasks described as being
performed by one or more other components of networked
environment 100.

FIG. 2A is an exemplary diagram of a computing device
200 that may be used to implement aspects of certain embodi-
ments of the present invention, such as aspects of content
server 110 or of receiver 120. Computing device 200 may
include a bus 201, one or more processors 205, a main
memory 210, a read-only memory (ROM) 215, a storage
device 220, one or more input devices 225, one or more output
devices 230, and a communication interface 235. Bus 201
may include one or more conductors that permit communi-
cation among the components of computing device 200.

Processor 205 may include any type of conventional pro-
cessor, microprocessor, or processing logic that interprets and
executes instructions. The processor 205 may be capable of
interpreting and executing multiple sequences of instructions
substantially simultaneously. Main memory 210 may include
arandom-access memory (RAM) or another type of dynamic
storage device that stores information and instructions for
execution by processor 205. ROM 215 may include a con-
ventional ROM device or another type of static storage device
that stores static information and instructions for use by pro-
cessor 205. Storage device 220 may include a magnetic and/
or optical recording medium and its corresponding drive.

Input device(s) 225 may include one or more conventional
mechanisms that permit a user to input information to com-
puting device 200, such as a keyboard, a mouse, a pen, a
stylus, handwriting recognition, voice recognition, biometric
mechanisms, and the like. Output device(s) 230 may include
one or more conventional mechanisms that output informa-
tion to the user, including a display, a projector, an A/V
receiver, a printer, a speaker, and the like. Communication
interface 235 may include any transceiver-like mechanism
that enables computing device/server 200 to communicate
with other devices and/or systems. For example, communi-
cation interface 235 may include mechanisms for communi-
cating with another device or system via a network, such as
network 130 as shown in FIG. 1A.

As will be described in detail below, computing device 200
may perform operations based on software instructions that
may be read into memory 210 from another computer-read-
able medium, such as data storage device 220, or from
another device via communication interface 235. The soft-
ware instructions contained in memory 210 cause processor
205 to perform processes that will be described later. Alter-
natively, hardwired circuitry may be used in place of or in
combination with software instructions to implement pro-
cesses consistent with the present invention. Thus, various
implementations are not limited to any specific combination
of hardware circuitry and software.

US 9,158,592 B2

9

A web browser comprising a web browser user interface
may be used to display information (such as textual and
graphical information) on the computing device 200. The
web browser may comprise any type of visual display capable
of displaying information received via the network 130
shown in FIG. 1A, such as Microsoft’s Internet Explorer
browser, Netscape’s Navigator browser, Mozilla’s Firefox
browser, PalmSource’s Web Browser, Google’s Chrome
browser or any other commercially available or customized
browsing or other application software capable of communi-
cating with network 130. The computing device 200 may also
include a browser assistant. The browser assistant may
include a plug-in, an applet, a dynamic link library (DLL), or
a similar executable object or process. Further, the browser
assistant may be a toolbar, software button, or menu that
provides an extension to the web browser. Alternatively, the
browser assistant may be a part of the web browser, in which
case the browser would implement the functionality of the
browser assistant.

The browser and/or the browser assistant may act as an
intermediary between the user and the computing device 200
and/or the network 130. For example, source data or other
information received from devices connected to the network
130 may be output via the browser. Also, both the browser and
the browser assistant are capable of performing operations on
the received source information prior to outputting the source
information. Further, the browser and/or the browser assistant
may receive user input and transmit the inputted data to
devices connected to network 130.

Similarly, certain embodiments of the present invention
described herein are discussed in the context of the global
data communication network commonly referred to as the
Internet. Those skilled in the art will realize that embodiments
of the present invention may use any other suitable data
communication network, including without limitation direct
point-to-point data communication systems, dial-up net-
works, personal or corporate Intranets, proprietary networks,
or combinations of any of these with or without connections
to the Internet.

Inthe following description, a preferred embodiment of the
method is described in terms of preferred data structures,
preferred and optional enforcements, preferred control flows,
and examples. Other and further application of the described
method, as would be understood after review of this applica-
tion by those with ordinary skill in the art, are within the scope
of the invention.

The following terminology and meanings are used to
describe embodiments of the invention. These terms are not
intended to be limiting.

Core—In a multi-core processor, a “core” represents the
independent hardware processing element on which applica-
tions will execute. An N-core processor means that there are
N independent hardware processing elements that can simul-
taneously execute at any instance of time.

Address-Space—An “address-space” is an operating sys-
tem managed association that defines the operational envi-
ronment in which an application will be executed. An
address-space includes memory and device resources; an
abstracted (or actual) range of memory addresses to which the
memory and device resources may be assigned; one or more
execution contexts; and a set of operating system interfaces.
Address-spaces are further refined by the degree of processor
access authorized by associated core privileges. A “virtual”
address-space executes in a core’s least privileged operating
environment (e.g., user mode). A “kernel” address-space
executes in a core’s more privileged operating environment
(e.g., kernel mode, hypervisor mode, supervisor mode, etc.),

10

15

20

25

30

35

40

45

50

55

60

65

10

including authorizations that permit execution in a core’s
most privileged operating environment (e.g., same mode as
the operating system). One of ordinary skill in the art will
recognize that other privilege levels are also within the scope
of this the invention. An address-space can be scheduled as
either Primary, Background or Restart or combinations
thereof.

Primary Address Space—A “primary address space” is an
address-space assigned to one or more cores, via an affinity
group grouping, where some or all tasks from the address-
space may be run.

Background Address Space—A “background address
space” is an address-space assigned to one or more cores on
which tasks from the address space may run in the back-
ground based on assigned priorities or other Task scheduling
means. Tasks may be assigned to a background address space
and may be run on any of the cores allocated to the affinity
group to which the background address space is assigned.

Restart Address Space—A “restart address space” is an
address-space assigned to one or more cores where the
address space can be rescheduled/restarted. A restart address
space can be restarted on any of the cores allocated to the
affinity group to which the restart address space is assigned.
Scheduling of a restart address space may be utilizing por-
tions of an assigned time window or may be dynamically
utilizing portions of unassigned time windows.

Application—An “application” is the executable object
code and memory resource assignments designed to perform
some intended function on the multi-core platform. Applica-
tions may be assigned to one or more address-spaces.

Affinity Group—An “affinity group” is an operating sys-
tem managed association that includes cores and address-
spaces. For this method, affinity groups are the basic element
of time scheduling on the multi-core platform. The operating
system schedules the multi-core’s execution time based on
the affinity groups. Multiple affinity groups may be defined.

Task-Core Affinity—A “task-core affinity” is an operating
system managed association that associates a task with a
particular core such that the task may only be executed by that
core. A task-core affinity may be changed at run-time if the
particular task-core affinity has been designated to be change-
able. If not designated to be changeable, then the task-core
affinity cannot be changed at run-time.

Dependency Group—A “dependency group” is an operat-
ing system managed association that consists of a group of
address-spaces that have some kind of resource in common.
Resources can include, but are not limited to, items such as
semaphores, information flows, other address spaces or por-
tions thereof, and hardware devices. Not all address-spaces in
a dependency group need to share all the same resources.

Schedule—In this method, a “schedule” includes a set of
affinity groups designed to be executed on a multi-core pro-
cessor within a scheduler’s time window, and a description on
how and when they may be executed. Multiple schedules,
with different combinations of affinity groups and execution
resources, may be defined. Sub-schedules may be utilized to
form a hierarchy of schedules.

Task—A “task™ is an operating system managed associa-
tion that defines a unique execution context being utilized by
an application. Each address-space has one or more tasks
associated with it. Tasks permit execution parallelism within
anapplication. Tasks may be assigned or inherit priorities that
may be used by an operating system to select which task
context to assign to a core for execution.

US 9,158,592 B2

11

FIG. 1B, FIG. 2B, and FIG. 3 illustrate data structures that
show basic attribute definitions and associations for address-
spaces, affinity groups, cores (as part of FIG. 2B) and sched-
ules.

FIG. 1B shows the basic elements of an address-space 135,
based on an Address-Space_Type 160. The address space
may include attributes 140, which may include 1D 145, a
unique identification assigned to the address space; Name
150; and Privilege 155, which may define the privilege level
of the address space (e.g., kernel, virtual, etc.). The address
space 135 further may include an explicit association of zero
or more applications 170 with the address-space 135. Asso-
ciation of zero applications with an address-space covers the
case when an address-space does not have an explicit asso-
ciation with an application as part of its definition (e.g., when
an application is loaded into and associated with the address-
space during run-time). The applications 170 may include an
Application_Type 180, which may include attributes includ-
ing but not limited to Executable_Name 190.

FIG. 2B shows an exemplary association of affinity groups
240, based on Affinity_Group_Type 250, whose member ele-
ments include specific associations of cores 260 with address-
spaces 270. Each defined affinity group 240 must contain at
least one core 260 and one address-space 270, but may
include as many cores 260 and address-spaces 270 as required
to form a specific association between cores 260 and address-
spaces 270. Each affinity group 240 may include attribute
275, which may include but not be limited to ID 280, a unique
identification assigned to the affinity group, and Name 285.
Each core 260 may include attributes 290, which may include
1D 295. FIG. 5 and FIG. 6 show examples of various associa-
tions of affinity groups, including affinity groups that contain
single core and address-space pairs; multiple address-spaces
and a single core; single address-spaces and multiple cores;
multiple address-spaces and multiple cores; as well as com-
binations where an address-space is running by itself in one
affinity group and running with another address-space in
another affinity group.

FIG. 3 shows the basic elements of a schedule 300 in
accordance with certain embodiments of this invention. Each
schedule 300 comprises certain attributes 310, which may
include without limitation an ID 320 and/or name 330, and is
an association of one or more affinity groups 340 and execu-
tion resources defined to execute on a multi-core processor.
Multiple schedules and a hierarchy of schedules (sub-sched-
ules) can be defined, each with unique (or identical) combi-
nations of affinity groups, and selected between as part of
certain embodiments of the invention.

FIG. 5 and FIG. 6 show examples of schedules, including
affinity groups running in parallel and affinity groups running
when no other affinity group is running. For example, in FI1G.
5 an exemplary schedule 500 for affinity groups 1-6. In this
exemplary embodiment, affinity group 1 510 comprises vir-
tual address space 1 and core 1 and is scheduled to run at two
different times. In the displayed embodiment, affinity group 2
530 and Affinity Group 3 520 both comprise virtual address
space 3, but include different core associations on which to
run that address space. In the displayed embodiment, affinity
group 4 540, affinity group 5 550 and affinity group 6 560 are
each scheduled to run on core 2 but have different address
spaces or combinations of address space associated with each
affinity group. FIG. 6 displays an alternate schedule 600
comprising additional exemplary combinations of address
spaces and cores with affinity groups. In particular, in the
displayed exemplary embodiment, affinity group 6 610 com-
prises multiple virtual address spaces associated with a single
core, which is scheduled repeatedly. Affinity group 3 620 may

10

15

20

25

30

35

40

45

50

55

60

65

12

include a single virtual address space associated with a single
core. In the displayed embodiment, affinity group 2 630 com-
prising virtual address space 2 and core 1 is scheduled to run
at the same time as affinity group 4 640, which comprises
virtual address space 4 and core 2. The embodiment of FIG. 6
also shows exemplary affinity group 7 650 comprises a single
virtual address space scheduled to run on multiple cores and
exemplary affinity group 8 660 which comprises multiple
address spaces assigned to multiple cores. When a schedule is
selected, the affinity groups defined as part of the schedule are
eligible to be selected for execution on the multi-core proces-
SOf.

FIG. 8 illustrates an exemplary main control flow for
scheduling affinity groups on the multi-core processor. The
sequence 800 illustrated in FIG. 8 occurs for each core within
the multi-core processor. When each core has been initially
released for scheduling 810, and following any potential syn-
chronization with the other processor cores 820, each core’s
next scheduling event is processed 830. The method covers
any selection of an affinity group or affinity groups from the
affinity groups defined in the current schedule, including
methods without specific enforcements and methods that
include specific enforcements.

One possible optional enforcement, for illustrative pur-
poses, is illustrated in the control flow diagram 900 included
in FIG. 9. A core’s next processing event is processed 910 and
system schedule selection is managed at 920. In this illustra-
tion, two possible enforcements on affinity group selection
are shown. For the illustrated embodiment, if the core is used
in the current schedule 930 then it is determined if the core has
a predefined sequence of affinity groups to schedule 940. If
the core does, then the next consecutive entry of the core’s
predefined sequence of affinity groups is selected 950. If the
previously selected affinity group was the last in the
sequence, then the first would be selected. If the core does not
have a predefined sequence of affinity groups to schedule,
then the affinity group associated with this core for which all
required cores are available and whose address spaces are not
currently running on another core associated with a different
affinity group could be selected 960. In this example, a pre-
defined sequence of affinity groups could have been defined
and sequentially selected for each of the core’s scheduling
events.

FIG. 4 shows an example data structure 400 that could be
utilized to define such sequential sequences. The FIG. 4
example data structure shows optional time windows that
could be used for core scheduling events. A predetermined
sequence 410 may include a predetermined sequence of
entries to schedule on a particular core. The predetermined
sequence 410 may include attributes 310, which may include
but not be limited to a Schedule_ID 420 which defines the
schedule to which the predetermined sequence 410 belongs;
a Core_ID 430, which defines the core with which the prede-
termined sequence 410 is associated; and a Core_Is_Sched-
uled attribute 440, which defines whether the core is used in
the referenced schedule or is a spare core with respect to the
referenced schedule. The predetermined sequence may fur-
ther include zero or more Predetermined_Entry 450 based on
a Core_Predetermined_Entry_Type 460 that comprises a list
of predetermined sequence entries of affinity group assign-
ments for the core. The predetermined sequence 410 may
further comprise one or more Affinity_Group_IDs 480 that
may include identification of one or more affinity groups
associated with an optional Time-Window 470 that may
include an optional start-time and duration. Core scheduling
events are not limited to time windows and could occur on any
event possible within the multi-core platform and its periph-

US 9,158,592 B2

13

eral environment. A second possible optional enforcement,
also shown in FIG. 9, is to restrict affinity group selection to
those affinity groups whose member address-spaces are not
already running on another core as a member of a different
affinity group. Example potential conflicts when using this
optional enforcement are shown in FIG. 7. Exemplary con-
flicts may include those shown in schedule 700. In the exem-
plary schedule, affinity group 3 710 and affinity group 4 720
are scheduled in overlapping time slots, creating a conflict
because both include virtual address space 3. Similarly, a
conflict is created because affinity group 3 710 and affinity
group 2 730 are both scheduled in overlapping time slots and
both include core 1. Another exemplary conflict is shown in
schedule 700 because affinity group 9 740 and affinity group
11 750 both include virtual address space 10 and have over-
lapping time slots. These optional enforcements are illustra-
tive only, any means can be utilized to select affinity groups
from the current schedule as well as select additional address-
spaces for scheduling on cores not currently being utilized for
the current schedule.

In FIG. 8, once processing of the core’s next scheduling
event 830 is complete, and the core is being utilized for the
current schedule 840 and one or more affinity groups were
selected to schedule on the core 850, a scheduling association
between the core and the selected affinity group(s) is made
860, the core optionally synchronizes with other cores asso-
ciated with the same affinity group 870 (e.g., for data or time
consistency), and scheduling of address-spaces from the
affinity group(s) selected for the core begins 880. While wait-
ing until the core’s scheduling of the current affinity group(s)
to complete 880, the process schedules address-spaces of the
selected affinity group(s), utilizing the set of cores associated
with the selected affinity groups(s) 890, repeating until the
core’s scheduling of the current affinity group(s) is complete.
Before processing the core’s next scheduling event 830, the
cores associated with an affinity group may be synchronized
875 and one or more cores may be disassociated with any
previous affinity groups 885. The key enforcement is that only
the address-spaces from the affinity group(s) selected for the
core are scheduled on the core. The scheduling of address-
spaces from the selected affinity group(s) continues until a
core related scheduling event occurs that signifies end of
scheduling for the current affinity groups. At the end of the
scheduling for the current affinity groups, the associated
address spaces are released for scheduling in future schedul-
ing events. Then the processing of the core’s next scheduling
event occurs, completing the loop that results in another
scheduling sequence for the core.

As shown in FIG. 8, if the core is not currently utilized in
the current schedule, the core waits for the completion of the
next schedule selection event 845 to determine if it will be
directly utilized in the current schedule. Also, if the core is
used in the current schedule, but no affinity groups were
selected as part of processing the core’s next scheduling
event, the core waits for the occurrence of the next core’s next
scheduling event 855. Address-spaces can be assigned to and
scheduled on cores when they are not being utilized as part of
the current schedule.

To reduce interference between cores, timing events asso-
ciated with one affinity group are restricted to affecting, at
most, only the processor cores assigned to the affinity group.

Exemplary applications of embodiments of the present
invention may include a method for defining affinity groups
that consist of an association of processor cores, address-
spaces, and authorizations (as shown, for example, in FIG. 1B
and FIG. 2B). Such a method may include:

10

15

20

25

30

35

40

45

50

55

60

65

14

a. Identification:

i. Identification of one or more unique affinity groups
(AG1, AG2, ... AGN).

ii. Identification of two or more unique processor cores
(C1,C2,...CP).

iii. Identification of one or more unique virtual address-
spaces (VAS1, VAS2, . . . VASM).

iv. Identification of zero or more unique kernel address-
spaces (KAS1, KAS2, ... KASQ).

v. Identification of zero applications (e.g., no explicit
specification of) or more applications (e.g., explicit
specification of) that are associated with an address-
space.

b. Assignment:

i. Assignment of one or more processor core identifica-
tions as members of an affinity group.

ii. Assignment of zero or more kernel address-space
identifications as members of an affinity group.

iii. Assignment of zero or more virtual address-space
identifications as members of an affinity group.

c. Enforcement:

i. Enforcement that each affinity group has at least one
processor core assigned to it.

ii. Enforcement that each affinity group has at least one
address-space assigned to it.

Another exemplary application of embodiments of the
present invention may include a method for generating sched-
ules for the defined affinity groups (as shown, for example, in
FIG. 3, with example schedules shown in FIG. 5 and FIG. 6).
Such a method may include:

a. Identification:

i. Identification of one or more unique schedules (S1,
S2,...8S).

b. Assignment:

i. Assignment of one or more affinity groups to a sched-
ule.

Another exemplary application of embodiments of the
present invention may include a method for enforcing the
currently selected schedule on a multi-core processor (as
shown, for example, in FIG. 8 and FIG. 9). Such a method
may include:

a. Selecting of affinity groups to be scheduled from the
available affinity groups defined for the currently
selected schedule. Such a method may cover selecting
affinity groups based on any selection sequence. This
may include an optional predefined sequence of affinity
groups for the core (FIG. 4 shows example attributes and
associations for a predefined sequence) and sequences
(example potential conflicts shown in FIG. 7) for which
the following principles may be optionally enforced:

i. At any instant of time, a core can be selected to be
associated with, at most, one of the available affinity
groups.

. At any instant of time, an address-space can be asso-
ciated with, at most, one of the affinity groups selected
to run on a core or set of cores (i.e., if already running
onone core or set of cores as part of one affinity group,
an address-space cannot run on other cores as part of
other affinity groups).

b. Scheduling of an affinity group (or affinity groups) asso-

ciated with the currently selected schedule.

i. When an affinity group (or affinity groups) is active,
scheduling of only the assigned address-spaces on the
assigned cores.

A. Only applications associated with the address-
spaces assigned to an affinity group are eligible to
be executed on the cores assigned to the same affin-

ity group.

—-
=

US 9,158,592 B2

15

ii. When a currently active affinity group (or affinity
groups) completes, the assigned address-spaces are
not eligible to be scheduled on the assigned cores as
part of the affinity group that completed.

c. Isolation of timing events for one affinity group to only
affect, at most, the processor cores assigned to the affin-
ity group.

Another exemplary application of embodiments of the
present invention may include a method for enforcing the
defined schedules on a multi-core processor (as shown, for
example, in FIG. 8 and FIG. 9). Such a method may include:

a. Selecting a schedule and enforcing the schedule and its
associated affinity groups on the multi-core processor.

b. Scheduling of address-spaces on cores which are cur-
rently not being utilized for the current schedule.

FIG. 10A shows an exemplary configuration of affinity
groups 1000 that may be used, for example, in an AMP
configuration on a 4-core multi-core processor. The AMP
configuration can be a stand-alone configuration or part of a
larger AMP/SMP hybrid configuration. Affinity Group 1
1010 is assigned to Core 1 and contains primary address
spaces AS1 and AS2. While Affinity Group 1 is executing in
this example, only applications belonging to AS1 and AS2
would be executing on Core 1. Affinity Group 2 1020 is also
assigned to Core 1 but is being used solely for AS3. Assigning
one address-space per affinity group may provide maximum
scheduling flexibility. Affinity Group 5 1050 is assigned to
core 3 and contains primary address spaces AS6 and AS7. The
other affinity groups 1030 in the example are all single
address-space groupings utilizing the remaining cores. In the
example, each core is treated as its own unique and indepen-
dent subsystem. Each subsystem within the system has no
dependence on any of the other affinity groups within the
system. In some hybrid configurations, it is possible to define
various subsystems, but unlike the configuration of FIG. 10A,
the cores can be dynamically allocated to different sub-
systems each time a subsystem is scheduled.

FIG. 10B shows a data structure and configuration that may
beused to control the scheduling of the affinity groups of F1G.
10A. The configuration demonstrates just one of many pos-
sible schedules that can be created using the data structure. It
is also possible to have multiple data structures and config-
ured schedules for the same affinity groups. The particular
data structure and schedule activated for scheduling may be
selected by the operating system or user. The configuration
shown in FIG. 10B consists of one overall schedule 1050 with
four sub-schedules 1060-1090 within it. Each sub-schedule
1060-1090 implicitly corresponds to a particular core as
defined by the affinity groups within the sub-schedule. Each
sub-schedule 1060-1090 further contains two sections, one
per affinity group. In the example, the schedule 1050 is per-
formed over a major period of 20 time windows. The sub-
schedules 1060-1090 define how the 20 time windows are
allocated to the affinity groups assigned to them and the
sequence of the affinity groups within that sub-schedule. It
should be noted that itis possible to configure different sched-
ules to use different major periods and that they may overlap
with schedules of different sizes.

FIG. 10C graphically illustrates the overall schedule 1050
defined in FIG. 10B for the affinity groups defined in FIG.
10A. As can be seen in FIG. 10C, the affinity groups are only
executed on the cores to which they are assigned by the
affinity group definitions of FIG. 10A, and only execute for
the predefined time periods and in the predefined sequence
given in FIG. 10B. The different affinity groups may execute
simultaneously on their associated cores per the configuration
of FIG. 10B. It should be noted that the particular schedules

10

15

20

25

30

35

40

45

50

55

60

65

16

defined in FIG. 10B left some unscheduled time in time
windows 5, 16 and 17. These unscheduled time windows may
be allocated in the future to affinity groups that need more
time. They can then be allocated to be used for restart address
spaces, as well as background address spaces, as will be
discussed in the following example.

FIG. 11A shows a more advanced affinity group configu-
ration 1100 in accordance with certain embodiments of the
invention. The example may be applied to SMP or hybrid
AMP/SMP systems. In the displayed embodiment, Affinity
Group 1 1110 is assigned to cores 1, 2 and 3 and consists of
Address Space 1 (AS1). Affinity Group 2 1120 consists of two
primary address spaces, AS2 and AS3. AS2 and AS3, when
executed as part of Affinity Group 2, are allowed to share
cores 1, 2 and 3. Affinity Group 3 1130 makes use of the same
cores as Affinity Groups 1 and 2 but consists of three primary
address spaces (AS4, AS5 and AS6) and three background
address spaces (AS1, AS2 and AS3). The three background
address spaces have a Background Max Priority of 10. Note
that Affinity Group 3 cannot be run concurrently with Affinity
Groups 1 and 2 not only because they share the same cores,
but also because Affinity Group 3 contains the same address
spaces as Affinity Groups 1 and 2.

Affinity Group 4 1140 consists of primary address space
AS7 and utilizes cores 1, 2 and 3. Affinity Group 5 1150
consists of primary address space AS8 and also utilizes cores
1, 2 and 3. Affinity Group 6 1160 utilizes cores 1, 2 and 3 but
contains no primary address spaces. It defines eight back-
ground address spaces (AS1 through AS8) with a Back-
ground Max Priority of 15, and one restart address space
(AS1). When address spaces are scheduled as background
address spaces, they may be scheduled based on their priority
and may be bounded by the Background Max Priority. The
restart address space (AS1) may restart in any available time
during Affinity Group 6’s allotted time. Affinity Group 71170
is assigned to core 4 and has four background address spaces
(AS1, AS4, AS5 and AS6) and three restart address spaces
(AS4, ASS5 and AS6). The Background Max Priority is 15.
Affinity Group 7 1170 can execute concurrently with Affinity
Groups 2, 4, and 5 as they have no address-space or core
overlaps.

FIG. 11B shows an exemplary data structure and configu-
ration 1180 that is used to control the scheduling of the
affinity groups of FIG. 11A. The configuration demonstrates
just one of many possible schedules that can be created using
the data structure. It is also possible to have multiple data
structures and configured schedules for the same affinity
groups. The particular data structure and schedule activated
for scheduling may be selected by the operating system or
user. The exemplary configuration of FIG. 11B has a major
period of 20 time windows. There is one sub-schedule that
contains seven sections where each section corresponds to
one of the affinity groups. Within each section, the start times
of an affinity group is given as well as its run durations. It can
be seen from the schedule that some time periods may contain
more than one affinity group. This is more readily apparent in
FIG. 11C.

FIG. 11C graphically illustrates the schedule 1180 imple-
mented by FIG. 11B. It is readily apparent that core 4 has only
been assigned Affinity Group 7 and that the schedule for core
4 includes unallocated time that can be utilized in the future
for growth. This growth may permit the addition of more
tasks to some address spaces, the addition of new affinity
groups, or the desire to give certain tasks more time so that
they may complete more quickly. Growth may be utilized by
assigning more time windows to certain affinity groups or by
assigning new cores. The only overlaps that exist between

US 9,158,592 B2

17

different affinity groups in this example are those that do not
share any address spaces or cores. This is due to an optional
enforcement, discussed previously, that prevents the same
address space from being executed concurrently in more than
one affinity group.

FIG. 12A exemplifies an alternate affinity group arrange-
ment 1200 the potential affinity groupings that may be con-
figured for an AMP or AMP/SMP hybrid system. Affinity
Group 1 1210 is configured to use core 1 for primary address
space AS1. Affinity Group 2 1220 is configured to use core 2
for primary address spaces AS2 and AS3. Affinity Group 3
1230 is configured to use core 3 for primary address spaces
AS4 and ASS. Affinity Group 4 1240 also uses core 3 but for
primary address space AS6. Affinity Group 5 1250 and Affin-
ity Group 6 1260 both use core 4 but for primary address
spaces AS7 and AS8 respectively. The groupings in this
example may be used to define a system with four subsystems
where the first subsystem comprises Affinity Group 1 1210,
the second subsystem comprises Affinity Group 2 1220, the
third subsystem comprises Affinity Groups 3 1230 and 4
1240, and the fourth subsystem comprises Affinity Groups 5
1250 and 6 1260. The different subsystems may be scheduled
independently of each other as they do not share any cores or
address spaces between them.

FIG. 12B displays one of many possible schedules 1270 for
the affinity groups of FIG. 12A. A notable difference between
FIG. 12B and the previously presented schedules is the addi-
tion of different major time periods for the different sub-
schedules. The first sub-schedule 1280 has a period of 11 time
windows and is used to schedule Affinity Groups 1 and 2.
Affinity Groups 1 and 2 have the same configuration in this
example. The second sub-schedule 1285 has a major time
period of 15 time windows and is used to schedule Affinity
Groups 3 and 4. The third sub-schedule 1290 has a major time
period of 20 time windows and is used to schedule Affinity
Groups 5 and 6. It can be noted that the exemplary scheduler
data structure has configured the system as having 3 sub-
systems where each sub-schedule is the schedule of a sub-
system. If the applications in Affinity Groups 1 and 2 are
independent of each other, it can be said that there are four
subsystems represented in the schedule. FIG. 12C graphically
depicts the schedule 1270 of FIG. 12B. The major time peri-
ods may start over as soon as they have completed.

Task-core affinity may be used to limit tasks to a specific
core. If atask-core affinity is set for a particular task, that task
will only be able to run on the core specified in the task core
affinity. If task-core affinity is set for one or more tasks, the
system scheduling may be priority-based preemptive sched-
uling as allowed by address space and task core affinity. For
example, FIG. 13 A shows four exemplary tasks 1310, 1320,
1330 and 1340 running on four cores 1315, 1325, 1335 and
1345 simultancously. These four exemplary tasks 1310,
1320, 1330 and 1340 may be part of the same address-space
and/or affinity group. The tasks in this example may be sched-
uled based on their priorities. For this example, Task 5 (T5)
1350 cannot be scheduled to run until its priority exceeds 70
and it can only be run on Core 1 as it has a task-core affinity
set for Core 1. In FIG. 13B, T5’s 1350 priority now exceeds
70 and it is ready to be run. T11310 is moved by the scheduler
from Core 1 1315 to Core 4 1345, displacing the lowest
priority task. T5 1350 is then run on Core 1 1315. Task-core
affinity may be preset. A particular task-core affinity may be
optionally designated to be changeable at runtime. A task-
core affinity may be designated as changeable at run-time by
setting a SetTaskCoreAffinity attribute as True.
SetTaskCoreAffinity=False may be the default condition so
that the task-core affinity for only those tasks for which

10

15

20

25

30

35

40

45

50

55

60

65

18

SetTaskCoreAffinity=True may be changeable at run-time. If
a task-core affinity is not designated as changeable at run-
time, the task-core affinity may be locked to the preset task-
core affinity, if any. In certain embodiments, the task-core
affinity may be changed in the definition of an affinity group
that includes the address space including the particular task,
which may be possible independent of the setting of a Set-
TaskCoreAffinity attribute. If no task-core affinity is set for a
particular task, the task will be assigned to a core in accor-
dance with the address space and affinity group associations
for that particular task.

The methods described can be used to implement many
types of processing systems. Two examples of such systems
are given in FIG. 14 and FIG. 15. Other systems may be
implemented with the described methods, including but not
limited to AMP, SMP, HMP (Heterogeneous Multi Process-
ing), and others. FIG. 14 shows an exemplary Unified Multi
Processing (UMP) system 1410 using eight cores. Cores 1
1315 and 2 1325 are assigned to AMP address spaces 1420,
cores 3 1335 and 4 1345 are assigned to a SMP address-space
1430, and cores 5-8 1355 are assigned to three more SMP
address spaces. Each one of these assignments may be con-
figured using affinity groups. The assignments for cores 5
through 8 1355 can be performed using one, or as many as
three, affinity groups. There are four subsystems exemplified
in FIG. 14.

FIG. 15 shows an exemplary Time-Variant Unified Multi
Processing (tuMP) system 1500 that can be implemented
using the described methods. The tuMP system 1500 allows
an S-core implementation, as shown in FIG. 14, to be imple-
mented on a 4-core microprocessor. Time Window 1 1510 and
Time Window 2 1520 may be configured using schedules and
sub-schedules as discussed in the descriptions of FIG. 10B
and FIG. 11B. In a first schedule, there may be three affinity
groups that are implemented on cores 1 1315 thru 4 1345. In
a second schedule, cores 11315 thru 4 1345 are used for only
one affinity group. The same system may also be imple-
mented in a single schedule that utilizes sub-schedules. Many
variations of schedules and affinity groups are possible to
create such systems and the path taken would be determined
by the specific requirements of the system being designed.

While the above description contains many specifics and
certain exemplary embodiments have been described and
shown in the accompanying drawings, it is to be understood
that such embodiments are merely illustrative of and not
restrictive on the broad invention, and that this invention not
be limited to the specific constructions and arrangements
shown and described, since various other modifications may
occur to those ordinarily skilled in the art, as mentioned
above. The invention includes any combination or sub com-
bination of the elements from the different species and/or
embodiments disclosed herein.

We claim:

1. A method for scheduling applications on a multi-core
processor comprising a plurality of processor cores, the
method comprising:

associating a first at least one processor core and a first

plurality of address spaces with a first affinity group;

associating a second at least one processor core and a

second plurality of address spaces with a second affinity
group; and

scheduling one or more of the first affinity group and the

second affinity group to execute on associated cores of
the multi-core processor, wherein the step of scheduling
further comprises:

releasing a first processor core for scheduling;
synchronizing the plurality of processor cores;

US 9,158,592 B2

19

processing a scheduling event for the first processor
core;
associating the first processor core with the affinity
group associated with the scheduling event;
assigning a plurality of address spaces to the first pro-
cessor core for the scheduling event;
synchronizing the first processor core with at least one of
the plurality of processor cores associated with the affin-
ity group associated with the scheduling event; and

wherein scheduling further comprises scheduling at least
one of the first one or more processor cores according to
a predefined sequence of affinity groups.

2. The method of claim 1, wherein the scheduling event
comprises task-core affinity for at least one task.

3. The method of claim 1, wherein at least one task-core
affinity is designated to be changeable at run-time.

4. The method of claim 1, wherein a task-core affinity is
designated not to be changeable at run-time.

5. The method of claim 1, further comprising synchroniz-
ing the first processor core with any of the plurality of pro-
cessor cores associated with the scheduling event.

6. The method of claim 1, wherein processing the sched-
uling event comprises selecting an affinity group for which all
of the associated cores are available and none of the associ-
ated address spaces are currently running on another core.

7. A method for scheduling applications on a multi-core
processor comprising a plurality of processor cores, the
method comprising:

associating a first at least one processor core and a first

plurality of address spaces with a first affinity group;

associating a second at least one processor core and a

second plurality of address spaces with a second affinity
group; and

scheduling one or more of the first affinity group and the

second affinity group to execute on associated cores of
the multi-core processor, wherein the step of scheduling
further comprises:

releasing a first address space for scheduling;

synchronizing the plurality of processor cores;

processing a scheduling event for the first address space;
and

assigning the first address space to a processor core for the

scheduling event;

synchronizing the first at least one processor core associ-

ated with the affinity group associated with the schedul-
ing event; and

wherein scheduling further comprises scheduling at least

one of the first at least one processor core according to a
predefined sequence of affinity groups and scheduling
the first affinity group and the second affinity group to
execute simultaneously on one or more cores of the
multi-core processor.

8. The method of claim 7, wherein the first affinity group
comprises at least one dependency group comprising a plu-
rality of address spaces that share at least one resource.

9. The method of claim 8, further comprising scheduling a
plurality of address spaces associated with at least one depen-
dency group.

10. The method of claim 8, wherein the second at least one
affinity group comprises at least one of the at least one depen-
dency group.

11. The method of claim 7, wherein only applications
associated with the first plurality of address spaces are eli-
gible to be scheduled on the first at least one processor core
when the first affinity group is being executed.

10

15

20

25

30

35

40

45

50

55

60

65

20

12. The method of claim 7, wherein at least one of the first
plurality of address spaces is a primary address space eligible
to run on any of the first at least one processor core.

13. The method of claim 7, wherein at least one of the first
plurality of address spaces is a restart address space eligible to
restart on any of the first at least one processor core.

14. The method of claim 7, wherein at least one of the first
plurality of address spaces is a background address space
eligible to run in the background on any of the first at least one
processor core.

15. The method of claim 14, wherein the step of scheduling
a background address space further comprises scheduling
based on a priority less than a predetermined threshold.

16. The method of claim 7, wherein the step of scheduling
further comprises activating one of a plurality of schedules
for at least one of the associated cores.

17. The method of claim 7, wherein the first plurality of
address spaces comprises at least one address space in the
second plurality of address spaces.

18. The method of claim 7, wherein the first at least one
affinity group comprises at least one address space in the
second at least one affinity group.

19. The method of claim 7, further comprising scheduling
a task to run on a processor core according to a task-core
affinity for the task.

20. The method of claim 7, further comprising scheduling
a task to run on a processor core according to a task-core
affinity if the task has an affinity for a processor core associ-
ated with the affinity group scheduled for execution.

21. The method of claim 7, further comprising not sched-
uling a task for execution with an affinity group if the task has
an affinity for a processor core that is not associated with the
affinity group.

22. A method for scheduling applications on a multi-core
processor comprising a plurality of processor cores, the
method comprising:

associating a first at least one affinity group with a first

subsystem;

associating a second at least one affinity group with a

second subsystem; and

synchronizing the first core with at least one of the plurality

of processor cores associated with the affinity group
associated with the scheduling event;
wherein scheduling further comprises scheduling at least
one of the first one or more processor cores according to
a predefined sequence of affinity groups; and

wherein the first at least one affinity group has no cores in
common and no address spaces in common with the
second at least one affinity group, whereby the first
subsystem can be scheduled independently of the sec-
ond subsystem.

23. A system for scheduling applications on a multi-core
processor, comprising:

a plurality of affinity groups each comprising one or more

processor cores and a plurality of address spaces; and

a scheduler configured for assigning one or more of the

plurality of affinity groups to execute on associated

cores of the multi-core processor, wherein the scheduler

is further configured for:

releasing a first processor core for scheduling;

synchronizing the plurality of processor cores;

processing a scheduling event for the first processor
core;

associating the first processor core with an affinity group
associated with the scheduling event; and

assigning a plurality of address spaces to the first pro-
cessor core for the scheduling event;

US 9,158,592 B2

21

synchronizing the first core with at least one of the
plurality of processor cores associated with the affin-
ity group associated with the scheduling event;

wherein processing the scheduling event comprises
scheduling at least one of the first one or more pro-
cessor cores according to a predefined sequence of
affinity groups.

24. The system of claim 23, wherein the scheduling event
comprises task-core affinity for at least one task.

25. The system of claim 23, wherein at least one task-core
affinity is designated to be changeable at run-time.

26. The system of claim 23, wherein a task-core affinity is
designated not to be changeable at run-time.

27. The system of claim 23, wherein the scheduler is fur-
ther configured for synchronizing the first core with any of the
plurality of processor cores associated with the scheduling
event.

28. The system of claim 23, wherein the scheduler is fur-
ther configured for selecting an affinity group for which all of
the associated cores are available and none of the associated
address spaces are currently running on another core.

29. A system for scheduling applications on a multi-core
processor, comprising:

a plurality of affinity groups each comprising one or more

processor cores and a plurality of address spaces; and
a scheduler configured for assigning one or more of the
plurality of affinity groups to execute on associated
cores of the multi-core processor and scheduling at least
one of the first one or more processor cores according to
a predefined sequence of affinity groups; and

synchronizing the first core with at least one of the plurality
of processor cores associated with the affinity group
associated with the scheduling event,

wherein the scheduler is further configured for:

releasing a first address space for scheduling;

synchronizing the plurality of processor cores;

processing a scheduling event for the first address space;

assigning the first address space to a processor core for
the scheduling event; and

scheduling a first affinity group and a second affinity
group to execute simultaneously.

30. The system of claim 29, wherein only applications
associated with the address spaces assigned to an affinity
group are eligible to be assigned to the processor cores
assigned to the affinity group scheduled for execution.

31. The system of claim 29, wherein at least one of the
plurality of affinity groups comprises at least one dependency
group comprising a plurality of address spaces that share at
least one resource.

32. The system of claim 31, wherein the scheduler is fur-
ther configured for scheduling a plurality of address spaces
associated with at least one dependency group.

30

40

22

33. The system of claim 32, wherein at least two of the
plurality of affinity groups share a dependency group.

34. The system of claim 29, wherein the scheduler is fur-
ther configured for activating one of a plurality of schedules
for at least one of the associated cores.

35. The system of claim 29, wherein the scheduler is fur-
ther configured for scheduling a task to run on a processor
core according to a task-core affinity for the task.

36. The system of claim 29, wherein the scheduler is con-
figured to schedule a task to run on a processor core according
to a task-core affinity if the task has an affinity for a processor
core associated with the affinity group scheduled for execu-
tion.

37. The system of claim 29, wherein the scheduler is con-
figured not to schedule a task for execution with an affinity
group ifthe task has an affinity for a processor core that is not
associated with the affinity group.

38. The system of claim 29, wherein each of the affinity
groups has no processor cores and no address spaces in com-
mon with any of the other of the plurality of affinity groups, to
permit each of the plurality of affinity groups to be scheduled
independently.

39. The system of claim 29, wherein the first plurality of
address spaces comprises at least one address space in the
second plurality of address spaces.

40. The system of claim 29, wherein the first at least one
affinity group comprises at least one address space in the
second at least one affinity group.

41. The system of claim 29, wherein the scheduler is fur-
ther configured to propagate timing events of the first proces-
sor core to at most, the plurality of processor cores associated
with the scheduling event.

42. A system for scheduling applications on a multi-core
processor, comprising:

a plurality of subsystems each comprising one or more
affinity groups, wherein each of one or more affinity
groups comprises one or more processor cores and a
plurality of address spaces; and

a scheduler configured for assigning one or more of the
plurality of affinity groups to execute on associated
cores of the multi-core processor, scheduling at least one
of the first one or more processor cores according to a
predefined sequence of affinity groups and synchroniz-
ing the first core with at least one of the plurality of
processor cores associated with the affinity group asso-
ciated with the scheduling event;

wherein each of the subsystems has no processor cores and
no address spaces in common with any of the other ofthe
plurality of subsystems, to permit each of the plurality of
subsystems to be scheduled independently.

#* #* #* #* #*

